祝贺天和学子收获哥伦比亚大学数据科学(Columbia University Master of Science in Data Science)Offer!
哥伦比亚大学
哥伦比亚大学(Columbia University),正式名称为纽约市哥伦比亚大学(Columbia University in the City of New York),简称为哥大,是一所位于美国纽约曼哈顿的世界顶级私立研究型大学,为美国大学协会的十四所创始院校之一,常春藤盟校之一。哥伦比亚大学于1754年根据英国国王乔治二世颁布的《国王宪章》而成立,最初名为国王学院,是美国历史最悠久的五所大学之一,也是培养诺贝尔奖获得者最多的大学之一。
排名情况2020年U.S.News美国大学综合排名位列第3名
2019年世界大学学术排名位列第8名
2020年泰晤士高等教育世界大学排名位列第16名
2020年QS世界大学排名位列第18名
M.S. in Data Science
This program is jointly offered in collaboration with the Graduate School of Arts & Science' Department of Statistics, and The Fu Foundation School of Engineering & Applied Science's Department of Computer Science and Department of Industrial Engineering & Operations Research.
该项目允许学生根据项目提供的四门基础课程,将数据科学技术应用于其感兴趣的领域 。学生有机会进行原创性研究(包括在顶点项目中),并与行业合作伙伴和教职员工互动。学生还可以选择学习创业方向或八个数据科学研究中心的一个方向 。
课程结构学生需完成至少30个学分的课程,其中包括21学分的核心课程和9学分的选修课程。核心课程包括:
STAT GR5701 PROBABILITY AND STATISTICS FOR DATA SCIENCE*
This course covers the following topics: Fundamentals of probability theory and statistical inference used in data science; Probabilistic models, random variables, useful distributions, expectations, law of large numbers, central limit theorem; Statistical inference; point and confidence interval estimation, hypothesis tests, linear regression.CSOR W4246 ALGORITHMS FOR DATA SCIENCE
Methods for organizing data, e.g. hashing, trees, queues, lists,priority queues. Streaming algorithms for computing statistics on the data. Sorting and searching. Basic graph models and algorithms for searching, shortest paths, and matching. Dynamic programming. Linear and convex programming. Floating point arithmetic, stability of numerical algorithms, Eigenvalues, singular values, PCA, gradient descent, stochastic gradient descent, and block coordinate descent. Conjugate gradient, Newton and quasi-Newton methods. Large scale applications from signal processing, collaborative filtering, recommendations systems, etc.STAT GR5703 STATISTICAL INFERENCE AND MODELING
COMS W4121 COMPUTER SYSTEMS FOR DATA SCIENCE
Prerequisites: Background in linear algebra and probability and statistics.
An introduction to machine learning, with an emphasis on data science. Topics will include least squares methods, Gaussian distributions, linear classification, linear regression, maximum likelihood, exponential family distributions, Bayesian networks, Bayesian inference, mixture models, the EM algorithm, graphical models, hidden Markov models, support vector machines, and kernel methods. Part of the course will be focused on methods and problems relevant to big data problems.COMS W4721 MACHINE LEARNING FOR DATA SCIENCE
STAT GR5702 EXPLORATORY DATA ANALYSIS AND VISUALIZATION
Prerequisite: programming.
Fundamentals of data visualization, layered grammer of graphics, perception of discrete and continuous variables, introduction to Mondran, mosaic pots, parallel coordinate plots, introduction to ggobi, linked pots, brushing, dynamic graphics, model visualization, clustering and classification.
ENGI E4800 DATA SCIENCE CAPSTONE AND ETHICS就业情况学生服务和职业发展的教职员工和助理主任将帮助该项目的学生进行职业发展。无论是在寻找实习、工作、新领域的人际网络,还是学习技术技能,都致力于提供必要的支持,以确保学生成功。
该项目程非常注重学生求职情况,将为学生提供以下帮助:
一对一支持:职业咨询课程侧重于求职辅导、简历和求职信准备、模拟面试、工资谈判等。
数据科学特定职业活动:每学期将举办雇主小组、招聘会、实习展、雇主信息会议、黑客马拉松、实地考察、校友网络会议等。
数据科学工作列表服务:学生每月平均收到 30 多个工作或实习机会,直接发送到收件箱中。
研究机会:校园连接计划在过去一年中将学生与 60 多个项目联系起来。
SEAS 和 CCE 活动:访问 SEAS 研究生事务的专业发展规划和哥伦比亚的职业教育中心。
该项目的毕业生在毕业后的三个月内100%找到了实习或者工作机会。雇主公司包括:Amazon, American Express, Barclays, Deloitte, ebay, Facebook, Goldman Sachs, Google, IBM, McKinsey, Microsoft, NBCUniversal, Netflix, Morgan Stanley等。